

**18th TRB Conference on** 



**Transportation Planning Applications** 

Adopting exploratory modelling in sensitivity analysis for a transportation infrastructure evaluation study -- Burnaby Mountain Gondola Transit (BMGT)

Xu Han, Senior Modeler, TransLink

## **Team member**

#### **TransLink Forecasting**

- Xu Han
- Ilan Elgar
- Bo Wen
- Sumit Bindra

#### **Gondola Project Management**

• Holly Foxcroft

**18th TRB Conference on** 





# **BMGT Project**

#### **Project background**

- Use the gondola to connect the SFU campus with the current Skytrain network
- Three proposed routes
- Regular point forecast using RTM for transportation metrics
- Sensitivity analysis





# Sensitivity study using Exploratory Modelling

### Goals

- Investigate the influence by different uncertainties and policies on gondola.
- Have a better idea of the gondola performance range in the long-term future.
- Help to understand the risk and benefit by the uncertainties.

#### Methodology

- The study used TransLink's new exploratory modeling.
- The model can simulate future scenarios with thousands of variable combinations.
- Then, use the statistical methods to discover the relationship between uncertainties/policies and performance indicators.
- The core model is based on the existing RTM. The full exploratory model is an expansion of the core model.

**18th TRB Conference on** 



## **Proposed approach**

- Using the exploratory modelling
- RTM runs the small sample as core model
- EMAT expands the sample size to a large size as the meta model.



**18th TRB Conference on** 



#### The potential effected variables

A total of eight variables were identified, which may have a significant impact on the performance of the gondola.

| Variable                                  | Range                               | Distribution | Correlate with       | Comment                                                                                                                                                                                                         |
|-------------------------------------------|-------------------------------------|--------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrolment Factor<br>(enr_fac)             | 0.65 – 1.35, peak @ 1               |              | emp_fac              | A factor of 1 represents the projections provided by Metro Vancouver, SFU, etc.                                                                                                                                 |
| Employment Factor<br>(emp_fac)            | 0.65 – 1.35, peak @ 1               |              | enr_fac              | A factor of 1 represents the projections provided by Metro Vancouver, SFU, etc.                                                                                                                                 |
| Work/Learn from Home<br>(wfh_lfh)         | 0 – 1, peak @ 0.2                   |              | pref_private_vehicle | To simulate telecommuting. 0 represents pre-COVID. 1 and 0.2 represent 45% and 10% reduction of commute trips                                                                                                   |
| Auto Propensity<br>(pref_private_vehicle) | 0.85 – 1.15, peak @ 1               |              | wfh_lfh              | This factor investigates the impact of potential increases/decreases in the desire to own cars                                                                                                                  |
| Gas Price<br>(gas_prices)                 | 0.43 – 4.5, peak @ 1.35<br>\$/litre |              |                      | The peak is at the current level of gas prices. The range of the factor is so wide because on the low end it reflects a world where the entire fleet is EVs, and on the high end it reflects high levels of RUC |
| Parking Cost Factor<br>(park_fac)         | 0.5 – 2, peak @ 1                   |              |                      | The factor applies to current parking cost at SFU campus                                                                                                                                                        |
| Route 143 Service<br>(143_service)        | Yes, No                             |              |                      |                                                                                                                                                                                                                 |
| Options                                   | Option 1,2,3                        |              |                      |                                                                                                                                                                                                                 |

## **Output values and ranges**

Total four outputs were captured.

- Gondola AM NB volume
- Gondola daily trips
- Daily VKT
- Transit Share

| d. | Output Summary       | Min        | Mean       | Мах        | Median     | 80% tile   |
|----|----------------------|------------|------------|------------|------------|------------|
|    | Gondola AM NB Volume | 840        | 2620       | 5350       | 2610       | 3230       |
|    | Daily Gondola Trips  | 7300       | 24320      | 42420      | 24220      | 29490      |
|    | Daily VKT(Metro Van) | 35,060,600 | 44,822,940 | 51,413,250 | 45,138,320 | 47,450,580 |
|    | Transit Share        | 0.49       | 0.59       | 0.71       | 0.60       | 0.62       |



- The maximum gondola peak hour volume is around 5000 pphpd. However, the probability that the volume is less than 3200 pphpd is 80%, which is close to the "design capacity" (3000pphpd).
- The gondola peak hour ridership has a higher chance of being between 1900-3200.

18th TRB Conference on





### **Influence Score**

The score can identify which input has the greatest impact on the output.

| Influence Score<br>(+ positive impact; - negative impact) |                      | Input Variables      |                      |                    |                         |               |                   |                      |         |  |
|-----------------------------------------------------------|----------------------|----------------------|----------------------|--------------------|-------------------------|---------------|-------------------|----------------------|---------|--|
|                                                           |                      | Enrollment<br>Factor | Employment<br>Factor | Auto<br>Propensity | Work/Learn<br>from Home | Gas<br>Prices | Parking<br>Prices | Route 143<br>Service | Options |  |
|                                                           | Gondola AM NB Volume | +17                  | +16                  | +5                 | -47                     | +4            | +4                | 3                    | 4       |  |
| Output Variables                                          | Daily Gondola Trips  | +14                  | +15                  | +5                 | -42                     | +4            | +5                | 6                    | 8       |  |
|                                                           | Transit Share        | +6                   | +5                   | +6                 | -22                     | +10           | +25               | 3                    | 22      |  |
|                                                           | Daily VKT            | +5                   | +4                   | +12                | -55                     | -15           | +4                | 2                    | 3       |  |

**18th TRB Conference on** 



### Conclusion

- The new approach can efficiently analysis the sensitivity by multiple factors.
- Takes the correlation of the two or more variables into account.
- Tested variable can be continuous or discrete.
- Easily to identify the influence level of each factor.
- The outputs can better reveal the likelihood of the project's performance.







**18th TRB Conference on** 

